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The thermally induced denaturation of DNA in the presence of an attractive solid surface is studied. The two
strands of DNA are modeled via two coupled flexible chains without volume interactions. If the two strands are
adsorbed on the surface, the denaturation phase transition disappears. Instead, there is a smooth crossover to a
weakly naturated state. Our second conclusion is that even when the interstrand attraction alone is too weak for
creating a naturated state at the given temperature and also when the surface-strand attraction alone is too weak
for creating an adsorbed state, the combined effect of the two attractions can lead to a naturated and adsorbed
state.
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I. INTRODUCTION

The structure of DNA is the key for understanding its
biological functioning, explaining why the physical features
of DNA have attracted attention over the last decades �1–7�.
A known component of this structure is the Watson-Crick
double strandedness: DNA is composed of two single-strand
molecules lined up by relatively weak hydrogen bonds. The
double strand exists for physiological temperatures and is
responsible for the stability of the genetic information stored
in DNA. For higher temperatures the double strand separates
into two strands �denaturation�. Many processes relevant for
the functioning of DNA—such as transcription and replica-
tion of the genetic information and packing of DNA into
chromosomes—proceed via at least partial separation �dena-
turation� of the two strands due to breaking of hydrogen
bonds �1,2�. In addition, denaturation is important for a num-
ber of technological processes, such as DNA sequence deter-
mination and DNA mechanical nanodevices �2�.

DNA denaturation is driven by changing the temperature
or the solvent structure—e.g., the pH factor �1,2�. There are
several generations of statistical physics models aiming to
describe the physics of denaturation. Early models, based on
the one-dimensional Ising model, focus on the statistics of
hydrogen bonds, modeling them as two-state variables �open
or closed� �4�. More recent models describe a richer physics,
in that they try to explore the space configurations of DNA
�5–9�.

Most of the physics literature devoted to DNA denatur-
ation studies this process in isolation from other relevant
processes involved in DNA functioning �3–10�. However,
denaturation is frequently only a component of a larger pro-
cess, such as replication or compactification into a nucleo-
some, the basic structural unit underlying the chromosome.

Here we want to study how another important aspect of
DNA physics—adsorption of the double-strand DNA on a
surface—influences its denaturation. Surface adsorption of
DNA is widely employed in biotechnologies for immobiliza-
tion and patterning �drug or gene delivery� of DNA �10,11�.

There are in fact several pertinent situations, where both ad-
sorption and denaturation of DNA are simultaneously at play.

�i� For DNA at normal conditions �pH=7 and NaCl con-
centration of 0.15 M� thermal denaturation occurs between
temperatures 67 and 110 °C �which are the temperatures for
A-T and C-G unbinding, respectively� �1,3,4�. The denatur-
ation temperature can be decreased by increasing the pH
factor—i.e., by decreasing the concentration of free protons
in the solvent, since the negatively charged phosphate groups
on each strand are not screened anymore by protons and
strongly repel each other. For the same reason, for DNA
adsorption on a positively charged surface, the increase of
pH will increase the electrostatic attraction to the surface.
Thus, at certain values of the pH factor and the surface
charge, denaturation and adsorption may take place simulta-
neously.

�ii� Surface adsorption can be realized by the hydrogen
bonding of negatively charged phosphate residues to a nega-
tive surface �e.g., silica surface� �10,12�. The effect is pos-
sible only when the electrostatic repulsion is sufficiently
screened by the solvent cations. Thus the same factors �tem-
perature, pH, solvent concentration� that decrease the inter-
strand attraction will weaken the DNA-surface binding �10�.

�iii� The binding to hydrophobic surfaces �e.g., aldehyde-
derivate glass or microporous membrane� goes via partial
denaturation which exposes the hydrophobic core of the
double helix and leads to the DNA-surface attraction �10�.
Both naturation and adsorption are simultaneously weakened
by increasing the pH �10,13�.

�iv� Human DNA has a total length of 2 m, bearing a total
charge of 108 electron charge units. This long object is con-
tained in the cell nucleus with diameter 10 �m, which is
comparable with the persistence length of DNA. Recall that
the persistence length of a polymer is a characteristic length
over which the polymer folds freely due to thermal fluctua-
tions. For double-strand DNA at normal conditions, the per-
sistence length is relatively large and amounts to 50 nm or
100 base pairs, while the persistence length of the single-
stranded DNA is much smaller, about 1–2 nm �i.e., 2–4 base
pairs� �14�. This seems to create a paradoxical situation: not
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only the large, strongly charged DNA has to be packed in a
very small compartment, but the DNA has to be replicated,
repaired, and transcribed. The problem is solved by a hierar-
chical structure: the DNA double helix is wrapped around
positively charged histone �achieving partial charge neutral-
ization�, histones condense into a nucleosome complex,
which in its turn is contained in chromatin, etc. It was re-
cently discovered that packing of DNA into nucleosomes
with a characteristic size much smaller than the persistence
length of the DNA chain proceeds via transient denaturation
of the double strand �15�. Denaturation reduces the persis-
tence length and thereby facilitates the packing process.

For all these processes we need to describe the DNA as a
double-strand polymer interacting with an attracting surface.
This will be the goal of the present paper.

Needless to say, there is an obvious situation where the
double-stranded structure is not relevant for the adsorption.
If the two strands are too tightly connected, their separate
motion is not resolved. This case is well known in the litera-
ture and—due to a large persistence length of a double-
strand DNA—can be described via an effectively single
semiflexible chain interacting with the surface �16�. These
studies complement the classic theory of flexible chain ad-
sorption, extensively treated in the literature �3,17,18�. The
electrostatic effects of DNA adsorption, modeled via a single
Gaussian chain, are studied in �19�. Another recent activity
couples the Ising-Zimm-Bragg model for the helix-coil tran-
sition with the known theory of flexible chain adsorption on
solid surfaces �20�. While interesting for their own sake, the
results of Ref. �20� do not apply to DNA adsorption and
denaturation, since the main assumption of Ref. �20�—that
the helical pieces of the polymer interact with the surface
much more strongly than the coiled ones—does not hold for
DNA.

This paper is organized as follows. In Sec. II we define
the model we shall work with. It describes two flexible
chains interacting with each other and with an attracting
solid surface. Section II also recalls the known correspon-
dence between the equilibrium physics of flexible polymers
and quantum mechanics. In its final part this section dis-
cusses limitations of the studied model in including volume
interactions. Section III recalls the quantum-mechanical
variational principle which will be the basic tool of our
analysis. Section IV shows that if both polymers are ad-
sorbed on the surface, they do not denaturate via a phase
transition. Section V discusses collective scenarios of bind-
ing, while Sec. VI studies conditions under which the natur-
ated and/or adsorbed state is certainly absent. The next sec-
tion presents the phase diagram of the model. The last
section summarizes our results. Some technical issues are
discussed in appendixes. The reader interested in the quali-
tative message of this work may study Sec. II for learning
the relevant notation and then jump to Sec. VII, which dis-
cusses general features of the phase diagram. A short account
of the present work has appeared already in Ref. �21�.

II. MODEL

When the motion of single strands is resolved—i.e., when
the interstrand hydrogen bonds are relatively weak, as hap-

pens next to denaturation or unzipping transitions—DNA be-
comes a complex system with different, mutually balancing
features at play. A realistic model of DNA should take into
account the stacking energy between two base pairs and its
dependence on the state �open or closed� of these pairs: he-
lical structure of the double strand, intrastrand and inter-
strand volume interactions �e.g., self-avoidance�, the pairing
energy difference between A-T and C-G pairs �respectively,
3kBT and 5kBT under normal conditions�, etc. Such fully
realistic models do not seem to exist; there are, however,
various models with different degrees of sophistication
which are intended to capture at least some features of the
double-stranded structure �3,5–10,16,17�.

The model we shall work with disregards almost all the
above complex aspects and focuses on the most basic fea-
tures of the problem. It consists of two homogeneous flexible
chains interacting with each other and coupled to the surface
described as an infinite rigid attractive wall.

Consider 2N coupled classical particles �monomers� with
radius vectors r�1�k and r�2�k �k=1, . . . ,N� and potential energy

��r���k� = �
k=1

N �U�r�k� + �
�=1

2 �K

2
�r���k − r���k−1�2 + V�r���k�	
 ,

�1�

where r�k�r�1�k−r�2�k, so that �r�1�k−r�2�k� is the distance between
two monomers, U is the interstrand potential, and V is the
surface-monomer potential. The harmonic interaction with
stiffness K �Gaussian chain� between successive monomers
in each strand is responsible for the linear structure of the
polymers.

The system is embedded in an equilibrium thermal bath at
temperature T=1 /� �kB=1�. The quadratic kinetic energy of
monomers is irrelevant, since it factorizes from the partition
function and does not influence the equilibrium probability
distribution:

P�r���k� =
e−���r���k�

Z
, �2�

Z =� � 
�=1,2


k=1

N

dr���k	e−���r���k�. �3�

This model without an adsorbing surface—i.e.,
V�0—was mentioned in �17� and studied in �5� in the con-
text of DNA denaturation. When the interstrand interaction
U�r� is absent, we get two independent flexible chains inter-
acting with the solid surface, a well-known model for
adsorption-desorption phenomena �3�. Recall that our pur-
pose is in studying these two processes—i.e., surface-
polymer interaction and interstrand attraction—together.
When taken separately, these processes are well studied and
well understood.

Note that for the considered Gaussian chain model the
stiffness parameter K relates to the characteristic persistence
length lp as �3�

K =
T

lp
2 . �4�
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A. Specification of the surface-monomer potential

We assume that the surface can be represented as an infi-
nite, solid plane at z=0 �the role of the solid surface can be
played by any body of a smooth shape and size much larger
than the polymer length�. Thus for the probability distribu-
tion �2� one has �for �=1,2 and k=1, . . . ,N�

P�r���k� = P�x��k,y��k,z��k� = 0, for z��k� 0. �5�

This boundary condition should be imposed as a constraint in
�2�.

The remaining part of the surface-strand interaction is de-
scribed by a negative �attractive� potential V that depends
only on the third coordinate: V�r���k�=V�z��k�. The potential
V�z� will be assumed to be short ranged: it is negative for
z→0 and tends to zero sufficiently quickly for z→�.

Let us continue the specification of the potential V�z�,
taking as an example the electrostatic attraction between one
negatively charged DNA strand and a positively charged sur-
face; see, e.g., �18�. We denote by 	 the surface charge den-
sity, q stands for the monomer charge �for DNA the effective
monomer charge is roughly q�1e, where e is the electron
charge�, and 
 is the dielectric constant of the medium into
which the polymer is embedded �
�80 for water at room
temperature�. Now the interaction energy between the sur-
face area dxdy and one monomer reads

q	


r
e−kDrdxdy , �6�

where r=�x2+y2+z2 is the distance between the surface area
dxdy and the monomer, while kD is the inverse Debye
screening length. This interaction leads to an attraction for
opposite charges: q	�0. The full expression of the inverse
Debye screening length is well known:

kD = �2�lB�
a

naZa
2, lB �

e2


T
, �7�

where lB is the Bjerrum length and na and Za are, respec-
tively, the concentration and valency of ions of the sort a
present in the solvent �so that the ion charge is Zae�. The
summation in �7� is taken over all sorts of ions present.1

Under normal conditions the Bjerrum length is �1 nm. At
this length the electrostatic interaction energy becomes com-
parable with the thermal energy T. The Debye length 1 /kD
varies between �0.5 and �1.5 nm under physiological con-
ditions. For pure water it is much longer: 1 /kD�1 �m.

Integrating �6� over x and y from −� to +�, we get for the
surface-monomer interaction �18�

V�z� =
2�q	


kD
e−kDz. �8�

Thus the strength of the potential is 2�q	

kD

, while the inverse
characteristic length is �expectedly� 1 /kD. The potential V�z�
is short ranged for all other relevant mechanisms of adsorp-
tion �hydrogen binding, hydrophobic interactions, cation ex-

change�. This means, in particular, that �0
�dzV�z� is finite for

all these mechanisms �22�.
Returning to �8�, we note that for a single flexible poly-

mer interacting with the surface the adsorption problem was
solved in Ref. �18� within the Schrödinger equation ap-
proach, to be discussed below in detail; see, in particular, Eq.
�23�. The adsorption-desorption phase-transition temperature
found in �18� reads

Tc =
8.33��	q�

kD
3 lp

2

, �9�

where lp is the persistence length from �4�.
Let us estimate the Debye length as kD

−1�1 nm and the
single-polymer persistence length as lp�1 nm, and assume
that the surface contains Z elementary �electron� charges per
1 nm1 nm. Normally Z�1, though strongly charged sur-
faces achieve Z=10–20. Taking the effective monomer
charge-1 elementary charge �which is a typical value for a
single-strand DNA� and recovering the Boltzmann constant,
we see that �9� predicts Tc of order of room temperature
�300 K�.

When looking at the concrete parameters in �9�, we
should also recall that Eqs. �6�–�8� account for the surface-
monomer electrostatic interaction, while the monomer-
monomer electrostatic interaction within the single polymer
is neglected. This is possible when the surface charge 	lp

2 at
the area lp lp �where lp is the persistence length of the
single strand� is larger than the monomer charge:

	lp
2� �q� . �10�

This condition will be satisfied for strongly charged surfaces
Z�10.

B. Specification of the monomer-monomer interaction between
the two strands

The interstrand potential U��r�1�k−r�2�k � � collects the effects
of hydrogen bonding, �partial�, stacking, and possible elec-
trostatic repulsion. We again assume that it is purely attrac-
tive, short ranged, and goes to zero sufficiently fast whenever
the interparticle distance �r�1�k−r�2�k� goes to infinity. In par-
ticular, the short-range features imply that �0

�dr r2U�r� is fi-
nite.

Several concrete examples of the interstrand potential U
were studied and favorably compared with denaturation ex-
periments in �5–7�. For example, Ref. �6� studies the Morse
potential

U�r� = �e−ar�e−ar − 2� , �11�

where � is the potential strength and 1
a is its characteristic

range. Within the Schrödinger equation approach �see �23�
below� Eq. �11� predicts a second-order denaturation transi-
tion at the critical temperature

Tc =
16�

a2lp
2 . �12�

Note that the appearance of the factor a2lp
2 in �12� is similar

to the that of the factor kD
2 lp

2 in �9�. Here are the standard1The quantity 1
2�anaZa

2 is called ionic strength.
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estimates for the parameters in �12�: ��0.01 eV, lp�1 nm,
and alp�2 �7�. These produce from �12� Tc�400 K, which
by an order of magnitude coincides with experimental values
�7�.

C. Effective Schrödinger equation

It is known �see, e.g., �3,7�� that in the thermodynamical
limit N�1 the free energy of flexible polymers in an exter-
nal potential is determined from an effective Schrödinger
equation; see Appendix A for more details. A sufficient con-
dition for the validity of the Schrödinger equation approach
is that the characteristic length D over which the polymer
density changes is much larger than the persistence length lp:

D� lp. �13�

This condition is always satisfied in the vicinity of a second-
order phase-transition, where D is naturally large for a fixed
lp. If condition �13� is satisfied for a short-range potential—
see �8� and �12� for relevant examples—this potential is nec-
essarily small for those distances �D, where the flexible
polymer is predominantly located �3�.

For the considered two-strand situation, the Schrödinger
equation reads

H� = E� , �14�

H � �
�=1

2 �−
1

2
�r��

2 + V�z��� + U�r� , �15�

where �using also �4��

V�z� � K�2V�z� =
�

lp
2V�z�, U�r� � K�2U�r� =

�

lp
2U�r� .

�16�

If there is a gap between the lowest two eigenvalues of H,
the ground-state wave function � determines the monomer
statistics as

n�r1
� ,r2

� � =�2�r�1,r�2� , �17�

where n�r1
� ,r2

� � is the probability distribution for two neigh-
boring monomers on the strands for the considered transla-
tionally invariant system.

Recalling the known correspondence between the flexible
polymer physics and �stationary� quantum mechanics �3�, we
can think of r�1,2= �x1,2 ,y1,2 ,z1,2� as the position vectors of
two quantum particles representing the strands, while r�=r�1
−r�2 is their mutual position.

The eigenvalue E is the energy of the quantum pair. It is
related to the free energy fN of the system as

E = �2lf + 3�l ln
2�

�l
. �18�

Since the surface is described by an infinite potential wall,
we have the following boundary condition for the wave
function:2

��r�1,r�2� = 0, if z1� 0 or z2� 0. �19�

Both V�z� and U�r� are attractive, V�0,U�0, and short
ranged; that is �0

�dz V�z� and �0
�dr r2U�r� are finite. When

U=0, the Hamiltonian H reduces to two uncoupled strands
�or two uncoupled quantum particles�, each one in the poten-
tial V�z�. The corresponding Schrödinger equation for the z
coordinate of one strand reads from �15�

�−
1

2
�z

2 + V�z����z� = E��z�, ��z = 0� = 0. �20�

It is well known that if V�z� is shallow enough, no bound
�negative energy� state exists, while the second-order binding
transitions correspond to adsorption of a single flexible poly-
mer �3�. The physical order parameter for this transition is
the inverse square average distance from the surface, 1 / �z2�,
which is finite �zero� in the adsorbed �desorbed� state. It is
useful to denote by � the dimensionless coupling constant of

V=�Ṽ such that �for U=0� the adsorption threshold is

�c,0 = 1. �21�

Note that the adsorption of single-strand DNA is a part of the
renaturation via hybridization �2�, a known method of ge-
netic systematics.

For the example �8� the concrete expression for � reads
from �9�

� =
8.33��	q�

TkD
3 lp

2

. �22�

Analogously, switching off both V�z� and the wall, we
shall get a three-dimensional central-symmetric motion in
the potential U�r�, which again is not bound if U is shallow.
This second-order unbinding transition with the order param-
eter 1 / �r2�, where r is the interstrand distance, corresponds
to thermal denaturation �strand separation� of the double-
strand polymer �1,2,5,7�.

The Schrödinger equation for the radial motion in the ab-
sence of the surface reads from �15� �7�

2In fact, one should be more careful when defining the boundary
condition �19�. For the two-particle case, it appears to be necessary
to fix not only the continuity of � and its value at the wall, as Eq.
�19� does, but also the behavior next to the wall: one has to require
that when z1 and z2 go to zero simultaneously, ��z1z2. Otherwise,
there will be �continuous� wave functions which provide a bound
state for two particles with an arbitrarily weak V�0 and arbitrary
weak interparticle interaction U�0, though the single particle
needs a critical strength of V to get into a bound state. This obvi-
ously pathological situation is prevented by the additional boundary
condition ��z1z2. For the wave functions we shall consider below,
this additional boundary condition will be satisfied automatically.
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�−
1

4
�r

2 + U�r����r� = E��r�, ��r = 0� = 0, �23�

where ��r� is related to the original wave function as

��r� =
��r�

r
. �24�

Note that �23� is again a one-dimensional Schrödinger
equation, but as compared to Eq. �20�, Eq. �23� contains an
additional factor of 1

2 next to the kinetic-energy term �r
2. This

factor arises due to effective mass; see �22� for more details.

Let us write likewise U=�Ũ, where � is the dimension-
less naturation strength. We take the naturation threshold in
the bulk to be

�c,0 = 1. �25�

For the example �11�, � reads from �12�

� =
16�

a2lp
2T

. �26�

When the wall is included—i.e., when condition �19� is
imposed—the strands lose in the adsorbed phase part of their
entropy. This is known to lead to a fluctuation induced effec-
tive repulsion �23�.

Let us now recall that the physics of weakly bound quan-
tum particles does not depend on details of the binding po-
tential �22�. Thus for a qualitative understanding of the situ-
ation one may employ the �-shell potential, which is easily
and exactly solvable and has very transparent physical fea-
tures; see Appendix B.

D. Relevant coordinates

Let us now return to the basic equation �20�. It is conve-
nient to recast this equation in new coordinates:

v1 =
1

2
�x1 + x2�, v2 =

1

2
�y1 + y2� , �27�

x1 − x2 = � cos �, y1 − y2 = � sin � , �28�

where

0� �, 0��� 2� , �29�

and to rewrite the Schrödinger equations �14� and �15� as

−
1

2�2

�

�

��
�

�

��
+

1

�2

�

��
+

1

2

�2

�v1
2 +

1

2

�2

�v2
2 +

�2

�z1
2 +

�2

�z2
2
�

+ �V�z1� + V�z2� + U��r�1 − r�2���� = E� . �30�

It is seen from �30� that the variables separate, since
��r�1 ,r�2� can be written as

��r�1,r�2� = ���,z1,z2��1�v1��2�v2��3��� , �31�

and the lowest-energy levels are to be found via the equation

−
1

2�2

�

�

��
�

�

��
+

�2

�z1
2 +

�2

�z2
2
� + �V�z1� + V�z2�

+ U„
��2 + �z1 − z2�2

…�� = E� . �32�

Thus, due to the translational invariance along the surface
and the invariance under rotations around the z axis, we are
left with three independent coordinates: the projection � of
the interparticle distance on the surface and the distances z1
and z2 between the particles and the surface.

Note that within the quantum-mechanical setting the
problem described by �32� corresponds to a three-body prob-
lem in d=3, where the role of the third body �with infinite
mass� is played by the surface.

E. Common action of the surface-strand and interstrand
potentials

In this and the subsequent subsection, we shall discuss
two possible limitations of the present model.

Above we combined together the surface-strand interac-
tion potential V, which was derived separately from studying
interaction of the surface with one flexible strand, and inter-
strand potential U deduced from studying two flexible
strands without the surface. While this type of combining is
widely applied in all areas of statistical physics, its applica-
bility needs a careful discussion in each concrete case. For
instance, it is possible that the presence of an adsorbing sur-
face will directly influence the interstrand potential. Let us
discuss one �perhaps the major� example of that type perti-
nent for the model studied.

It is well known that the two strands of DNA are nega-
tively charged �1�. For double-stranded DNA under normal
conditions, the interstrand repulsion is screened by positive
counter-ions, so that the hydrogen bonding can overcome the
electrostatic repulsion and create an effective attraction,
which is then the main reason for interstrand binding �1�.
Once DNA denaturates and separates into two strands, the
counter-ions are released into the ambient medium and are
clouded around each strand. However, for temperatures not
very far from the denaturation temperature, the counter-ions
continue to screen the electrostatic repulsion, so that once the
temperature lowers below the denaturation transition tem-
perature, the two strands reversibly assemble back into the
double strand �1�. We stress that the fact that �partially re-
leased� counter-ions still provide a sufficient screening fol-
lows from the existence of the observed reversible renatur-
ation transition.

When DNA denaturates in the presence of a positively
charged surface, the cloud of screening counter-ions around
each strand will tend to rarefy. This will increase the screen-
ing length and make the overall interstrand interaction repul-
sive. However, this is possible only for strongly adsorbed
strands, where the majority of counter-ions are within the
direct influence of the surface charge. In the present work we
focus on weakly bound strands, where the characteristic
length of the adsorbed layer, D, is much larger than the per-
sistence length lp �approximately 1 nm in normal condi-
tions�, which is of the same order of magnitude as the Debye
screening length 1 /kD; see �13�. Thus the majority of
counter-ions will not feel the adsorbing surface, and in this
case we do not need to account directly for the influence of
the surface on the interstrand potential. For strongly ad-
sorbed DNA strands—i.e., for D�1 /kD—it can be necessary
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to couple directly the interstrand potential with the degree of
adsorption.

F. Self-avoidance and of electrostatic volume interactions

In Hamiltonian �1� we accounted for the surface-strand
and interstrand interactions, but neglected all the volume in-
teractions such as self-avoidance and the �for charged poly-
mers� electrostatic interaction between various monomers. It
is important to note that the volume interactions coming
from the intrachain contributions can be accounted for within
the present model via renormalizing the persistence length lp;
see �1� and �4� for definitions. As shown in �24� for a single
flexible polymer interacting with electrostatically adsorbing
surface, the self-avoiding interactions and electrostatic vol-
ume interactions renormalize the persistence length. Pro-
vided that the Debye screening length 1 /kD is not very
large—a sufficient condition for this is kDlp

�N�1, where N
is the number of monomers �24�—both self-avoiding and
electrostatic volume interactions lead to an effective persis-

tence length l̃p, which differs from the bare persistence

length mainly by the factor N1/10: l̃p�N1/10lp �24� �the re-
maining part of renormalization is numerical factors, which
are not essential for the present qualitative discussion�.3

Once the persistence length is renormalized, one can still use
the flexible polymer coupled to an adsorbing surface �24�.
Thus the transition temperatures �9� and �12� are divided by
a factor of N1/5, where N is the number of monomers. Now,
for the typical single-strand DNA length N�104, this renor-
malization will not make any substantial change in the tran-
sition temperatures, though it is essential for longer poly-
mers, N�105. In particular, for such a long polymer the
persistence length may increase to an extent that the condi-
tion �13� will be violated.

We will see below that for the qualitative conclusions of
this paper, the precise form of the renormalized persistence
length is not essential, provided that one can still employ the
Schrödinger equation �20� for describing denaturation and
desorption. The main reason for this is that the renormaliza-
tion of the persistence length homogeneously renormalizes
both dimensionless couplings � and � in �25� and �21�, re-
spectively.

The above discussion does not account for the interchain
volume interactions and thus should not create an impression
that the full volume interaction effect for two coupled chains
can be described via a renormalized persistence length. It is
clear that one needs a more specific study of volume inter-
actions for the present model. Since such a study poses im-
minent analytical problems, it will be concluded at a later
time.

III. VARIATIONAL PRINCIPLE AND THE EXISTENCE OF
THE OVERALL BOUND STATES

Note that Eqs. �19� and �32� follow from a variational
principle

�I��� = 0, �33�

with

I��� = �
0

��
0

��
0

�

�d�dz1dz2�1

4
�2� ��

��
�2

+ � ��

�z1
�2

+ � ��

�z2
�2
 +

1

2
�V�z1� + V�z2� + U„

��2 + �z1 − z2�2
…

− E��2	 = 0, �34�

where � is taken real, since we are interested in bounded
�discrete-level� states. We already assumed that � is properly
normalized:

�
0

��
0

��
0

�

�d�dz1dz2�
2�z1,z2,�� = 1. �35�

If either V�z�=0 or U=0, the criterion for the existence of
a bound state is well known, since it reduces to the existence
of a negative energy in the spectrum or, equivalently, to the
existence of a physically admissible �satisfying the proper
boundary conditions� wave function with a negative average
energy.

The situation is slightly more delicate when the two po-
tentials V and U act together. Let us assume that either for
V�z�→0 or for U��r�1−r�2 � �→0 there are negative-energy
states. Denote by

E�U�� 0, E�V�z1� + V�z2�� = 2E�V�� 0, �36�

respectively, the corresponding lowest �most negative� ener-
gies.

Then it suffices to have a normalized wave function �
with

I���� E�U� + 2E�V� , �37�

for at least one overall bound—i.e., adsorbed and
naturated—state to exist.

IV. ABSENCE OF A DENATURATION PHASE TRANSITION
FOR ADSORBED STRANDS

Let us return to the variational principle �34� and assume
that V�z� is strong enough to create at least a single �lowest�
bound state with energy E�V��0. Denote by ��z� the corre-
sponding lowest-energy normalized wave function:

−
1

2
���z� + V�z���z� = E�V���z� . �38�

For the overall problem we shall employ the following
variational wave function:

���,z1,z2� = ��z1���z2����� , �39�

where ���� is an unknown, tentatively normalized, viz.,

3In more detail, Ref. �25� considers a continuous polymer model
with length L and reports for the square of the effective persistence

length l̃p
2 �L1/5lp

2. For the present discrete model, we take naturally
L�N.

ALLAHVERDYAN et al. PHYSICAL REVIEW E 79, 031903 �2009�

031903-6



�
0

�

d� ��2��� = 1, �40�

wave function, to be determined from the optimization of
�34�. Note that in �39� the boundary conditions for the sur-
face are satisfied via ��z1���z2�.

Substituting �39� into �34� and varying it over �, we get an
effective Schrödinger equation for ����

− �1

�

�

��
�

�

��

� + �Ueff��� − ��� = 0, �41�

where Ueff��� is an effective potential:

Ueff��� = �
0

�

dz1�
0

�

dz2�
2�z1��2�z2�U„

��2 + �z1 − z2�2
… ,

�42�

and where � is the reduced energy

� = E − 2E�V� . �43�

Two main points about the effective potential �42� is that
it is attractive �since so is U� and goes to zero for �→�. The
last feature follows from the analogous one of U�r� and the
fact that ��z� are normalizable. A more explicit form for Ueff
can be obtained by assuming that U�r� is a �-shell potential:

U�r� = −
�

r0
��r − r0� , �44�

with strength ��0 and attraction radius r0�0. The transpar-
ent properties of this potential are recalled in Appendix B.
The critical binding strength of this potential is

�c,0 = 1, �45�

as given by �B9�. �When comparing Eq. �44� with Eq. �B2�,
note that the additional factor of 2 comes from the reduced
mass.�

Using �44�, we now obtain from �42� after changing vari-
ables

Ueff��� = −
�

r0
�

0

�

dv�
0

v

du�2�v + u

2
��2�v − u

2
�

����2 + u2 − r0�

= − �
��r0 − ��
�r0

2 − �2 ��r0
2−�2

�

dv�2�v + �r0
2 − �2

2
�

�2�v − �r0
2 − �2

2
�

= − 2�
��r0 − ��
�r0

2 − �2 �
0

�

dv�2�v + �r0
2 − �2��2�v� .

�46�

It is now seen explicitly that Ueff��� is zero for sufficiently
large �.

Note that �41� has the form of the two-dimensional
Schrödinger equation for an effective particle in the attrac-

tive potential Ueff���. It is well known that any �however
weak� attractive potential in two dimensions creates a bound
state �22�. Thus there is a normalizable function ���� such
that � in �42� is negative. This means that

E� 2E�V� , �47�

and, according to our discussion in Sec. III, there is an over-
all bound �naturated and adsorbed� state provided V�z� cre-
ates a bound state. In our model a sufficiently attractive sur-
face potential confines fluctuations of the two strands and
prevents the denaturation phase transition �this, however,
does not mean that the denaturation is absent as a physical
process; see below�.

The physical reason for the existence of an overall bound
state for an arbitrary small potential is a peculiar two-
dimensional effect: the weakly singular attractive �1 /�2 po-
tential �23�.4 Indeed changing in �41� the variables as

�̃ =
�

��
, �48�

we get

−
�2�̃

�2�
+ �Ueff��� −

1

4�2 − �
�̃ = 0. �49�

Equation �48� implies

�̃�0� = 0, �50�

i.e., the existence of the infinite wall at �=0 for the effec-
tively one-dimensional equation �49�. It is, however, seen
from �49� that there is also an attractive potential 1 / �4�2�. It
is known that if the strength of such a potential is larger than
1 /4 seen in �49�, the �effective� quantum particle will fall to
zero; i.e., the ground state will be minus infinity �22�. The
value 1 /4 is just at the border of this phenomenon and, there-
fore, any attractive short-range potential acting in addition to
1 / �4�2� suffices to create a bound state �23�.

To illustrate the behavior of Ueff for a weakly bound state
of the potential V�z�, let us assume that V�z� is also a �-shell
potential:

V�z� = −
�

2z0
��z − z0� . �51�

Recall that we still have an infinite wall at z=0 and that for
the �-shell potential the bound state exists for

�� �c,0 = 1; �52�

see Appendix B for details. If now � is close to 1, the energy
E�V��−k2 /2 is small. Working out �46� with the help of Eq.
�B11�, which essentially reduces to

4The one-dimension case in this respect is not much different from
the three-dimensional situation. The known statement on the exis-
tence of a bound state for any small one-dimensional potential is
connected with a different mechanism—that is, with allowing all
values of the one-dimensional coordinate �no infinite wall at the
origin�. The two-dimensional situation is indeed peculiar in this
respect.
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��z� � �2ke−kz, �53�

we get

Ueff��� = − 2�k
��r0 − ��
�r0

2 − �2
. �54�

Since for small k the wave function ��x� is almost delocal-
ized, the effective potential Ueff��� is proportional to k and
goes to zero for k→0—that is, for �→1. In other words, the
trial function �39� does not predict any �overall� binding for

�� 1. �55�

Note however that although for ��1 any interstrand at-
traction is able to prevent the denaturation phase transition,
the energy � in �49� is exponentially small for small
Ueff—i.e., small � or small k. Recall that this energy is esti-
mated as �22�

��
2

r0
2 exp�2�

0

�

d� �Ueff���	 =
2

r0
2e−1/��kr0�. �56�

Thus for a small � or k we get a very large separation
between the strands. In this sense the �incomplete� denatur-
ation phenomenon without the phase transition is present in
our model.

In summary, the main physical message of this section is
that if the two strands are localized near the surface, the
overall DNA molecule does not melt via a phase transition
with increasing the temperature: there is only a smooth
crossover from a tightly bound to a �very� weakly bound
state. The cause of this effect is that the surface confines
fluctuations of each strand. Mathematically this is expressed
by an additional attractive potential − 1

4�2 in �49�.
This result was obtained without taking into account vari-

ous realistic features of DNA. It is possible that the denatur-
ation transition in the adsorbed phase will recover upon tak-
ing into account some of those neglected features—e.g.,
volume interactions between the two strands and within each
strand �see �9� for a prediction of such a transition in a dif-
ferent model of DNA that partially accounts for volume in-
teractions�.

We nevertheless expect that the obtained result will apply,
at least qualitatively, to denaturation-renaturation experi-
ments and will be displayed by facilitation of the naturation
in the adsorbed phase. We are not aware of any specific
experiment done to check the renaturation-facilitating effect
of an attractive surface. There are, however, somewhat re-
lated experiments showing that the renaturation rate can sig-
nificantly increase in the condensed �globular� phase of
single-strand DNA �25�. This condensed phase is created by
volume �monomer-monomer� interactions. The effect was
obtained under a rather diverse set of conditions, but to our
knowledge it did not get any unifying explanation. The anal-
ogy with our finding is that in the condensed phase fluctua-
tions of the single-strand DNA are also greatly reduced as
compared to a coil�-free� state.

V. COLLECTIVE BINDING

With the aim to understand the situation when V�z� alone
does not provide any binding, we take for the variational
function

��z1,z2,�� = ��z1,z2����� . �57�

As compared to �39�, we do not require that z1 and z2 be
factorized, and we are going to optimize over ��z1 ,z2�. In
contrast, ���� is a fixed, normalized �see �40�� known func-
tion.

Substituting �57� into �34� and varying over ��z1 ,z2�, we
get

−
1

2� �2

�z1
2 +

�2

�z2
2
� + �V�z1� + V�z2� + Veff��z1 − z2�� − E1��

= 0, �58�

where

Veff�z� � �
0

�

d���2���U���2 + z2� . �59�

Recall that by the very meaning of the variational ap-
proach E1 provides—for any � and any normalized function
����—an upper bound for the real ground-state energy. Equa-
tion �58� describes two one-dimensional particles with inter-
particle interaction Veff��z1−z2 � � and coupled to an external
field V�z�.

For the interparticle interaction given as in �44�, this ef-
fective potential Veff�z� reads

Veff�z� = − ���r0 − z��2��r0
2 − z2� . �60�

We are now going to show that Eq. �58� predicts
binding—that is, it predicts E1�0 and a localized normaliz-
able wave function ��z1 ,z2�—at the critical point �=1 of the
potential V�z�. To this end let us calculate the perturbative
correction �E introduced by the effective potential Veff. At
first glance the application of perturbation theory is problem-
atic, because we search for a nearly degenerate energy level.
However, due to strong delocalization of the corresponding
wave function, the matrix elements of the perturbing poten-
tial Veff appear to be small as well, and applying perturbation
theory is legitimate. This will be also underlined below by a
perfectly finite behavior of the second-order perturbation
theory result.

Recall that in the first two orders of the perturbation
theory we have �22�

�E � E1 − 2E�V�z�� = �0�Veff�0� − �
0

�

dK
��0�Veff�nK��2

�K − 2E�V�
,

�61�

2E�V� = − k2, �62�

where �z1 ,z2 �0�=��z1���z2� is the lowest-energy state of the
unperturbed system and where the integration over K in-
volves all excited wave functions of the unperturbed two-
particle system with wave vector K and energy �K �all these
wave functions are in the continuous spectrum�. Note that
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there are three orthogonal families of these states:

��z1��̃�nz2,n�, �n =
n2

2
−

k2

2
, �63�

��z2��̃�nz1,n�, �n =
n2

2
−

k2

2
, �64�

�̃�nz1,n1��̃�nz2,n2�, �n1n2
=

n1
2

2
+

n2
2

2
, �65�

where �̃�nz ,n� are the corresponding single-particle excited
�continuous spectrum� wave function with wave number n.
These wave functions are normalized over the wave-number
scale; see Eq. �B14� in Appendix B. This type of normaliza-
tion is important for integration over the wave number K in
�61�.

The first-order contribution to �E appears to be zero for
k→0+ �i.e., for �→1+�. Indeed, we can use �53� for

��z1,z2� = ��z1���z2� = 2ke−k�z1+z2�, �66�

to conclude

�0�H�0� = �
0

��
0

�

dz1dz2Veff��z1 − z2���2�z1��2�z2�

= �
0

�

dv�
0

v

duVeff�u��2�v + u

2
��2�v − u

2
�

= 2k�
0

�

dv e−2kv�
0

v

duVeff�u� = O�k� . �67�

Using �63�–�66�, we shall calculate various matrix elements
entering into �61�:

�0�H�n� = �
0

��
0

�

dz1dz2��z1���z2�Veff

��z1 − z2����z1��̃�nz2,n�

= �2k2k�
0

�

dv�
0

v

due−k�3v+u�/2Veff�u��̃�n�u + v�
2

,n� ,

�68�

�0�H�n1,n2� = �
0

��
0

�

dz1dz2��z1���z2�Veff

��z1 − z2���̃�nz1,n��̃�nz2,n�

= 2k�
0

�

dv�
0

v

due−kv/2Veff�u��̃�n1�u + v�
2

,n1�
�̃�n2�v − u�

2
,n2� . �69�

This results in the following formula for �E:

�E = − 2�
0

�

dn
��0�H�n��2

n2

2
+

k2

2

− �
0

�

dn1dn2
��0�H�n1,n2��2

n1
2

2
+

n2
2

2
+

k2

2

.

�70�

Working this out and going to the limit k→0+ �i.e., �→1+�,
we obtain

�E = − 8��
0

�

duVeff�u�	2

�4�
0

� dn

1 + n2��
0

�

dve−3v/2�̃�nv
2

,0�	2
 �71�

+ �
0

� dn1dn2

2 + n1
2 + n2

2�
��

0

�

dve−v�̃�n1v
2

,0��̃�n2v
2

,0�	2
 � 0. �72�

This expression for �E is finite in the limit k→0 �see
Appendix C for details� and proportional to the squared per-
turbation strength ��0

�duVeff�u��2. In the limit �→1 �and for
sufficiently small ��, we are in the situation where neither
V�z1�+V�z2� nor U alone creates bound states. Recalling our
discussion in Sec. III on the existence of bound states as
reflected in the magnitude of variational energy, we conclude
from �E�0 that the present approach does predict binding
for �=1 and for sufficiently small �. Since the ground state
is supposed to be continuous, the very fact of having a nega-
tive energy for �=1 and not very large � implies that a
bound state will exist for

�c� �� 0, �c��� 1, �73�

where neither of the potentials V and U alone allows binding.
Here �c�1 is some critical value at which the real ground-
state energy is equal to E�U�; recall our discussion in Sec.
III. Note that the precise form of ���� is irrelevant for the
argument. This function has to be normalized and such that
the effective potential Veff does not become large for a suf-
ficiently small � �and, of course, does not vanish for a finite
��. For the rest it can be arbitrary.

Thus in view of �73� we have found an example of so-
called Borromean binding, where the involved potentials do
not produce bound states separately, but their cumulative ef-
fects lead to such a state. It is seen from �57� that this un-
usual type of binding is connected with correlations between
the z components of each particle and separately with corre-
lations between their x and y components �which enter via
��.

Note that for three �or more� interacting pointlike particles
�instead of two particles and a surface� this effect was pre-
dicted in nuclear physics; see, e.g., Ref. �26� for a review.

VI. NO-BINDING CONDITIONS

A. First method

Here we shall consider certain lower bounds on the
sought ground-state energy. Although these bounds are basi-

HOW ADSORPTION INFLUENCES DNA DENATURATION PHYSICAL REVIEW E 79, 031903 �2009�

031903-9



cally algebraic, they are nontrivial, and they allow one to
find out under which conditions both adsorption and natur-
ation are absent. In this way we complement the study of the
previous section. We employ—with necessary modifications
and elaborations for our situation—the method suggested in
�27�.

Note from �19� that the presence of an infinite wall can be
modeled via the boundary condition at the plane z=0:

��r�1,r�2� = 0, if z1 = 0 or z2 = 0. �74�

Although the physical content of the problem demands that
��r�1 ,r�2� be also zero for z1�0 or z2�0, we can formally
require only �74� and continue the potential V�z� to z�0 via

V�− z� = V��z�� . �75�

The ground-state energy of the new problem defined with
help of �74� and �75� will be obviously equal to the ground
state of the original problem.

Let us now introduce a fictive particle with mass M and
radius vector

r�3 = �x3,y3,z3� . �76�

Now Eq. �75� is generalized to the corresponding translation-
invariant interaction with the fictive particle:

V��zk − z3��, k = 1,2. �77�

It is again obvious that upon taking the limit M→�, the
motion of the fictive particle will completely freeze; r�3 will
reduce to a constant which can be taken equal to zero.

Thus the three-particle �two real particles plus the fictive
one� Schrödinger equation reads analogously to �14� and
�15�

�−
1

2M

�2

�r3
� 2

−
1

2

�2

�r1
� 2

−
1

2

�2

�r2
� 2

+ V��z1 − z3�� + V��z2 − z3��

+ U��r�1 − r�2�� − E�M�
� = 0, �78�

the correct two-particle energy being recovered in the limit
M→�.

Note that the boundary conditions �74� are modified as
well:

� = 0, if z1 = z3 or z2 = z3. �79�

It is seen that the Hamiltonian in �78� is invariant with
respect to the simultaneous shift of all three radius vectors r�k
�k=1,2 ,3� by some vector. Since we consider a finite-
particle quantum system, symmetry of the Hamiltonian im-
plies symmetry of the corresponding ground-state wave
function. Thus we deduce for this function

� =��r1
� − r2

� ,r1
� − r3

� ,r2
� − r3

� � , �80�

which implies

� �

�r3
�

+
�

�r1
�

+
�

�r2
� 
� = 0. �81�

We shall now decompose the Hamiltonian in �78� such
that �81� is employed and that the separate sectors of the
problem—i.e., surface-particle and interparticle
interactions—are made transparent:

H � −
1

2M

�2

�r3
� 2

−
1

2

�2

�r1
� 2

−
1

2

�2

�r2
� 2

+ V��z1 − z3�� + V��z2 − z3��

+ U��r�1 − r�2�� �82�

=H0 + H12 + H13 + H23, �83�

H0 � −
1

2� �

�r3
�

+
�

�r1
�

+
�

�r2
� ��a

�

�r3
�

+ b
�

�r1
�

+ b
�

�r2
� � ,

�84�

H13 � −
c

2� 1

1 + x

�

�r1
�

−
x

1 + x

�

�r3
� �2

+ V��z1 − z3�� , �85�

H23 � −
c

2� 1

1 + x

�

�r2
�

−
x

1 + x

�

�r3
� �2

+ V��z2 − z3�� , �86�

H12 � − 2d�1

2

�

�r1
�

−
1

2

�

�r2
� �2

+ U��r�1 − r�2�� . �87�

The coefficients a, b, c, and d are read off directly from
�82�–�87�:

a = −
2x2

�1 + 2x�2 , �88�

c =
�1 + x�2

�1 + 2x�2 , �89�

b = d =
2x�1 + x�
�1 + 2x�2 , �90�

where the limit M→� has already been taken. Here x is a
free parameter; the boundaries of its change are to be deter-
mined below.

Let us now take average of the Hamiltonian H with the
ground-state wave function �. The term ���H0��� is zero
due to �81�. We shall now establish when the remaining
terms in ���H��� are certainly positive; that is, when
bound—i.e., naturated or adsorbed—states are certainly ab-
sent.

Changing the variables as

��1 = �1 + 2x�r�1 + r�3, ��3 = xr�1 + r�3, �91�

one reduces H13 to a form

H13 = −
c

2

�2

���1
2

+ V���1z − 2�3z�� , �92�

where �1z and �3z are the third components of the vectors ��1

and ��3, respectively. The constant factor 2�3z will obviously
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not change the binding conditions. Recalling boundary con-
ditions �79�, we see that ���H13��� is certainly positive for

�� c , �93�

where � is the coupling constant of V, such that H13 with
c=1 has the binding threshold �=1 �compare with �21� and
�52��. Obviously, ���H23��� is positive under the same con-
dition �93�.

As for ���H12���, we change the variables as

r�12 = r�1 − r�2, R� 12 =
r�1 + r�2

2
, �94�

to see that H12 takes the form

H13 = −
2d

m

�2

�r�12
2 + U�r12� . �95�

Thus, ���H13��� is certainly positive for

� � 2d , �96�

where � is the coupling constant of U, such that H12 with
2d=1 has the critical binding threshold �=1 �compare with
�25� and �45��.

Let us now recall that we employed c and 2d as inverse
effective masses, which should be positive; thus, we should
restrict ourselves to the situations

x� 0 �97�

and x�−1, as seen from �89� and �90�. As inspection shows,
the relevant no-binding condition is produced for x changing
from zero to plus infinity—i.e., for the branch �97�.

Thus, under conditions �93� and �96�, where the limit M
→� is being taken, the overall bound states are certainly
absent.

B. Second method

Let us now turn to another, simpler way of deriving no-
binding regions. For some range of parameters, the present
method will have a priority over the considered one, and then
by combining the two methods we shall get an extended
no-binding region. We return to the very original quantum
Hamiltonian in �15� and write it as

−
�

4� �

�r1
�

+
�

�r2
� �2

�98�

−
�

4� �

�r1
�

−
�

�r2
� �2

+ U��r�1 − r�2�� �99�

−
1 − �

2

�2

�r1
� 2

+ V�r�1� �100�

−
1 − �

2

�2

�r2
� 2

+ V�r�2� , �101�

where

0� �� 1. �102�

The term in �98� is seen to be always positive; for the
term �99�, we change the variables as in �94�, to get that it is
always positive for

� � � , �103�

while the terms in �100� and �101� are both positive under

�� 1 − � . �104�

Here � and � have the same meaning as in �93� and �96�.
Thus no binding is possible if �103� and �104� are satisfied
simultaneously.

C. Convexity argument

As for the last ingredient of our construction, we note that
the coupling constants � and � enter into Hamiltonian
H�� ,�� in the linear way and that the following convexity
feature is valid for the ground state as a function of � and �:

min�H���1 + �1 − ���2,��1 + �1 − ���2�� �105�

=min��H��1,�1� + �1 − ��H��2,�2��

� � min�H��1,�1�� + �1 − ��min�H��2,�2�� . �106�

In other words, if in the phase diagram the binding—i.e.,
naturation or adsorption—is prohibited at points ��1 ,�1� and
��2 ,�2�—that is, min �H��1 ,�1���0 and min �H��2 ,�2��
�0—then there is no binding on the whole line connecting
those two points, because from �105� and �106� one has min
�H���1+ �1−���2 ,��1+ �1−���2���0.

Thus we draw together the bounds �93�, �96�, �103�, and
�104�—under conditions �97� and �102� determining the
ranges of the parameters x and �, respectively—and com-
plete it to a convex figure ensuring that for every two points
belonging to �93�, �96�, �103�, and �104� the line joining
them is also considered as binding prohibited. The result is
presented in Fig. 1. It is seen that there is the critical strength
�c=0.25—which is necessary for binding.

The latter value of � is special for the following reason:
for �→�—i.e., when the interparticle attraction is too
strong—the two particles are tightly connected to each other.
The mass of the composite particle is 2 times larger, and �at
the same time� the potential acting on it is 2 times larger.
This leads to the adsorption threshold �=0.25, which is in-
dependently obtained via the above no-binding conditions.

VII. PHASE DIAGRAM

We are now prepared to present in Fig. 1 the qualitative
phase diagram of the model. The axes of the phase diagram
are � and �. The dimensionless parameter � enters into the

interstrand interaction energy �Ũ, such that without the ad-
sorbing surface the naturated phase of the two strands exists
only for ��1; see Secs. II B and II C for details. In this
phase the two strands are localized next to each other and
their fluctuations are correlated. The typical form of � for the
considered short-range potentials is
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� =
c�

a2lp
2T

, �107�

where c is a numerical prefactor, � is the strength of the
interstrand potential �i.e., the modulus of its minimal value�,
lp is the persistence length, and T is temperature �recall that
Boltzmann’s constant is unity, kB=1�; see Sec. II B for mode
details. In particular, recall that for the Morse potential dis-
cussed around Eq. �26� the concrete formula for � reads �
= 16�

a2lp
2T

, where ��0.01 eV, lp�1 nm, and alp�2 �7�. Taking
room temperature for T, we get that ��1.

Analogously, the dimensionless parameter � enters the

strand-surface attractive potential as �Ṽ, such that the ad-
sorbed phase of one single strand �that is, without interstrand
interaction� exists for ��1; see Secs. II A and II C for de-
tails. Note that � has the same qualitative form �107�, where
� is the strength of the surface-strand potential. Recall that
for the electrostatic surface-monomer attraction the concrete
expression for � is discussed in �22�: �= 8.33��	q�

TkD
3 lp

2

, where kD

−1

is the Debye screening length �kD
−1=0.1 nm at normal condi-

tions�, q is the monomer charge �around one electron charge
for single-strand DNA�, lp is the persistence length �around
1 nm for single-strand DNA�, and finally 	 is the charge
density of the surface. Strongly charged surfaces have typi-
cally 1–10 electron charges per 1 nm2. At room temperature,
��1.

In Fig. 1 the thermodynamical phases are confined by
thick lines. ND, NA, and DD refer, respectively, to the
naturated-desorbed, naturated-adsorbed, and denaturated-
desorbed phases. The meaning of these term should be self-
explanatory; e.g., in the ND phase, the two strands are local-
ized next to each other, but they are far from the surface.

First of all, we see that there is no adsorbed and denatur-
ated phase: as we have shown already in Sec. IV, even small
�but generic� interstrand �interparticle� attraction suffices to
create a naturated state, provided that the two strands �par-
ticles� are adsorbed. Thus the rectangular region c in Fig. 1,

which belongs to the naturated and adsorbed phase NA, re-
fers to conditions where the overall binding is due to suffi-
ciently strong attraction to the surface.

The curved line going from ��=1, �=0� to ��=0.25, �
=1� in Fig. 1 confines region a where no overall binding
�i.e., no denaturation and no adsorption� is possible accord-
ing to the lower bounds obtained in the previous section.

Region b, confined by two straight normal lines and the
thick curve, refers to the collective binding situation. It is
seen that this region lies below both adsorption and denatur-
ation thresholds. While we do not know the precise position
of the thick curve confining region b, we proved its existence
in Sec. V.

Finally, the line separating the NA �naturated-adsorbed�
phase from the ND �naturated-desorbed� phase extends
monotonically to �=0.25 for �→�. Note that the monoto-
nicity of this line is conjectured. Still this conjecture is, to
our opinion, quite likely to be correct.

VIII. SUMMARY

The main purpose of this paper was in studying DNA
denaturation in the presence of an adsorbing plane surface.
As we argued in the Introduction, there are several relevant
situations when the two processes, adsorption and denatur-
ation, are encountered together. Taking into account the im-
portance of these processes in the physics of DNA, as well as
for DNA-based technologies, it is important to understand
how specifically adsorption and denaturation interact with
each other.

Our two basic findings can be summarized as follows.
First, we saw that provided the two strands of DNA are �even
weakly� adsorbed on the surface, there is no denaturation
phase transition. There is only a smooth crossover from the
naturated state to a �very� weakly bound state. Second, we
have shown that when the interstrand attraction alone and the
surface-strand attraction alone are too weak to create a na-
turated and adsorbed state, respectively, their combined ef-
fect �“Borromean binding”� can create such a naturated and
adsorbed state.

The results were displayed on a simple model of two
coupled homopolymers �strands� interacting with the plane
surface. The volume interaction within each homopolymer
can be accounted for via renormalizing the persistence
length; see Sec. II F. Many realistic features of DNA are
thereby put aside; see the beginning of Sec. II. We plan to
investigate some of them elsewhere. Another interesting sub-
ject is to study the DNA adsorption on a curved surface
�28,29�.

We nevertheless hope that the basic qualitative aspects of
the presented problem are caught adequately and that the
presented results increase our understanding of DNA phys-
ics.
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APPENDIX A: DERIVATION OF THE SCHRÖDINGER
EQUATION FROM A TRANSFER MATRIX

Imposing periodic boundary conditions, the partition
function �3� can be written as

Z = TrTN �� dr�1dr�2TN�r�1,r�2;r�1,r�2� , �A1�

where T is the transfer operator parametrized with two con-
tinuous indices:

T�r�1,r�2;r�1�,r�2�� = exp�− ��U�r�1 − r�2� + V�r�1� + V�r�2��

−
�K

2
�r�1 − r�1��

2 −
�K

2
�r�2 − r�2��

2	 . �A2�

Thus in the thermodynamic limit N→�

Z = �N, �A3�

where � is the largest eigenvalue of T.
For simplicity reasons, the subsequent discussion will be

done in terms of a transfer matrix, which depends on a two
scalar variables z� and z. The extension to the more general
case �A2� is straightforward.

Write the eigenvalue equation for the right eigenvector as

� dz�e−�V�z�−��K/2��z − z��2
��z�� = e−�f��z� , �A4�

where e−�f and � are, respectively, the eigenvalue and eigen-
vector. It is seen from �A3� that Nf is the free energy of the
model in the thermodynamic limit N�1 provided that there
is a gap between the largest eigenvalue � and the one but
largest eigenvalue.

One now assumes that

�KD2� 1, �A5�

where D is the characteristic length of ��z�. Since �2�z� is
the density of monomers, we see that D quantifies the thick-
ness of the adsorbed layer. Recalling �4� we can write con-
dition �A5� as

D� lp; �A6�

i.e., the thickness is much larger than the persistence length.
Under condition �A5� the dominant part of the integration

in �A4� is z�z�. With this in mind we expand ��z�� in �A4�
as

��z�� = ��z� + �z − z�����z� +
�z − z��2

2
���z� + ¯ �A7�

and substitute this expansion into �A4�. The outcome is

�2�
�K�

e−�V�z��1 +
1

2�K

d2

dz2���z� = e−�f��z� . �A8�

The corrections to this equation are of order O� 1
K2�2D4 �

=O�
lp
4

D4 �.
Equation �A8� can be rewritten as

1

2�K

d2

dz2��z� = �e��V�z�− f̃� − 1���z�, f̃ � f +
T

2
ln

2�

K�
.

�A9�

For weakly bound states,

�V�z� − f̃ � 1, �A10�

for those z where ���z�� is sufficiently far from zero. Thus in
�A9� we can expand

e��V�z�− f̃� − 1 � ��V�z� − f̃� �A11�

and get the Schrödinger equation:

�−
1

2

d2

dz2 + �2KV�z����z� = ��2Kf +
�K

2
ln

2�

�K
���z�

� E��z� . �A12�

The ground-state energy E of this Schrödinger equation
relates to the free energy f of the original polymer problem.
For weakly bound states, E is negative and close to zero.

APPENDIX B: SOLUTION OF THE SCHRÖDINGER
EQUATION WITH THE �-SHELL POTENTIAL

1. Discrete spectrum

Here we outline bound-state solutions of a one-
dimensional Schrödinger equation

−
1

2m
���x� + �V�x� − E���x� = 0, �B1�

with the attractive �-shell potential5

V�x� = −
�

2mx0
��x − x0� �B2�

and with the infinite wall at x=0:

5We should like to clarify the physical meaning of studying the
�-shell potential �B2�. First of all, it should be clear that the weak-
potential condition �A11� does not �formally� hold for the strongly
singular potential �B2�. Thus the transition from the transfer-matrix
equation to the Schrödinger equation is formally not legitimate.
Nevertheless, there is a clear reason for studying the potential �B2�
in the context of polymer physics, since it is known that the physics
of weakly bound quantum particles in a short-range binding poten-
tial does not depend on details of this potential �22�. So once the
conditions for going from the transfer-matrix equation to the
Schrödinger equation are satisfied for some short-range potential,
one can employ the singular potential �B2� for modeling features of
weakly bound particles in that potential. This is in fact the standard
idea of using singular potentials.
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��0� = 0. �B3�

Here ��0 is the dimensionless strength of the potential,
while x0 is the radius of attraction. m is the particle mass. In
contrast to the main text, here we do not put m=1.

Due to boundary condition �B3�, the considered problem
is equivalent to the corresponding three-dimensional
Schrödinger problem with centrally symmetric potential.

Let us rewrite �B1� as

���x� − k2��x� = −
�

x0
��x − x0��, k � �2m�E�� 0.

�B4�

For x�x0, Eq. �B4� is a free wave equation. Its solutions for
x�x0 and x�x0 are found from the boundary conditions
��x=0�=0 and ��x→��=0, respectively. Thus the overall
solution is obtained as

��x� = N−1/2 sinh�kx��e−kx�, �B5�

x� � min�x,x0�, x� � max�x,x0� , �B6�

where N is the normalization constant determined via
�0
�dx�2�x�=1,

N =
e−2kx0

4k
�sinh�2kx0� − 2kx0� +

sinh2�kx0�
2k

e−2kx0. �B7�

Substituting �B5� into �B4� we get an equation for the
energy of the single bound state:

kx0 = � sinh�kx0�e−kx0. �B8�

The critical strength of the potential is seen to be

� = 1, �B9�

because, for small kx0, Eq. �B8� gives

kx0 =
� − 1

�
. �B10�

Note the following form of ��x� for small values of kx0:

��x� =
�2kx�

x0
e−k�x�−x0� + O�k� . �B11�

For large values of � the bound-state energy increases as

2kx0 = � . �B12�

2. Continuous spectrum

For studying the continuous �positive-energy� spectrum of
Eq. �B1�, we rewrite it as

�̃��x� + n2�̃�x� = −
�

x0
��x − x0��̃, n � �2mE� 0.

�B13�

The solution is found as

�̃�nx,n� =
�2

�� sin�nx0�
sin�nx��sin�nx� + ��n�� ,

�B14�

where ��n� is the phase shift to be determined below and

where Ñ is the normalization constant determined via or-
thogonalization on the n scale:

�
0

�

dx�̃�nx,n��̃�nx,n�� = ��n − n�� . �B15�

This normalization can be checked via the large-x behav-

ior of �̃�x ,n� �22�. Note that for �̃�nx ,n� there are two types
of dependence on the wave number n: as a prefactor for the
argument and as a parameter entering into the normalization
and the phase shift.

For the phase shift ��n� we get

nx0 sin ��n� = � sin�nx0�sin�nx0 + ��n�� , �B16�

which for n→0 reduces to

1

�
− 1 =

nx0

2
cot���n�� . �B17�

Thus

��0� = 0, �B18�

and for �̃�nx ,0� we have

�̃�nx,0� =
�2x�
��x0

sin�nx�� . �B19�

APPENDIX C

While the finiteness of the integral �71� is obvious �be-
cause the integral �0

�dn / �1+n2� is already convergent�, the
convergence of the integral in �72� is less trivial. Estimating
from �B14� and �B19�,

�̃�nx,0� =� 2

�
sin�nx� , �C1�

we get for the integral in �72�

4

�2�
0

� dn1dn2

1

2
+ n1

2 + n2
2

n1
2n2

2

��n1
2 − n2

2�2 + 2�n1
2 + n2

2� + 1�2

=
1

4�2�
0

2��
0

� d�ndn

1

2
+ n2

n4 sin2 2�

�n4 cos2 2� + 2n2 + 1�2 �C2�

=
1

4�2�
0

��
0

� d�dn

1

2
+ n

n2 sin2 �

�n2 cos2 � + 2n + 1�2 . �C3�

The integral over n in �C3� is convergent and produces an
integrable logarithmic singularity �ln cos2 �. Thus the
double integral in �C3� is finite.
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